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:  Abstract

Single-particle cryo-electron microscopy is increasingly used as a technique to
determine the atomic structure of challenging biological systems. Recent ad-
vances in microscope engineering, electron detection, and image processing have
allowed the structural determination of bigger and more flexible targets than
possible with the complementary techniques X-ray crystallography and NMR
spectroscopy. However, there exist many biological targets for which atomic
resolution cannot be achieved currently with cryo-electron microscopy, making
unambiguous determination of the protein structure impossible. Although de-
termining the structure of large biological systems using solely NMR is often
difficult, highly complementary experimental atomic-level data for each molecule
can be derived from the spectra, and used in combination with cryo-electron mi-
croscopy data. We review here strategies with which both techniques can be
synergistically combined, in order to reach detail and understanding unattain-
able by each technique acting alone; and the types of biological systems for
which such an approach would be desirable.
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1. Introduction

NMR spectroscopy has been used for a long time as a powerful tool to deter-
mine atomic structures of proteins and other macromolecules. The analysis of
NMR spectra provides information on the local chemical environment of atoms
from which local restraints can be derived that can be used to determine the
three-dimensional atomic structure of a protein. The size limitation for routine
structure determination is typically ~ 30 kDa in liquid-state NMR (IsSNMR),
which relies on the fast tumbling of molecules, although in some cases much
larger proteins have been studied by NMR [1].

For magic-angle spinning NMR (referred to here as solid-state NMR or ss-
NMR) this size limitation does not hold (proteins can be larger than 100 kDa),
but other limitations pose challenges for the structural interpretation of ssNMR
data [2]. NMR in general is extremely sensitive to even small changes in the
local structure, which makes it a unique tool to study structural details such as
protonation states, binding of ions, presence of different rotamers, etc., which
are invisible to or at least very difficult to determine by most other experimental
techniques. This is particularly helpful in drug discovery, where ligand binding
modes need to be determined with very high accuracy. A particular strength of
the NMR technique lies in the fact that proteins can be studied in solution at
physiological temperatures and therefore (potentially functionally important)
protein dynamics can be observed [3].

On the other hand, in single-particle cryo-electron microscopy (cryo-EM),
individual protein molecules are embedded in a thin (20-100 nm) layer of vit-
rified ice. A large number of images of these single proteins, ideally in random
orientations, are then reconstructed into a 3D density map which enables the
building of an atomic model if the resolution of the reconstruction is high enough
(better than ~ 4.5 A). For several years the resolution in cryo-EM was rather
limited to just below 1 nm, which allowed docking of known structures into
the EM density maps, for example to ascertain the placement of individually

determined (by X-ray crystallography or NMR) subunits within a large protein
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Figure 1: Schematic representation of integrating NMR with cryo-EM. Brief details of infor-

mation obtained from NMR and cryo-EM are shown.

complex. However, the recent technological breakthroughs in cryo-EM now en-
able the determination of molecular structures quite routinely to resolutions of
3-4 A for many protein complexes.

As NMR provides the most detailed information on local length scales and
cryo-EM is most accurate at larger length scales, the techniques are complemen-
tary, and it seems promising to combine both techniques to study the structure

of proteins and protein complexes.

2. Information from NMR and Cryo-EM Experiments

The most informative measures obtained from NMR experiments (see also
Fig. [1) are NOE (nuclear Overhauser effect) distance restraints (up to 6 A),
dihedral angle restraints (from J-coupling), and chemical shifts which can for
example be used to identify secondary structure (typically through TALOS [4])
but can also be used directly as restraints in MD simulations [5]. S? order pa-
rameters report on angular motional freedom of internuclear vectors. Only few
measures yield information on longer length scales, in particular PCS (pseudo-
contact shifts), PRE (paramagnetic relaxation enhancement) and RDC (residual
dipolar coupling), which are less common and more difficult to obtain: PCS and
PRE require the use of paramagnetic labels, whereas RDC can also use para-

magnetic labels or can alternatively be performed in aligning media. PRE can
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be used to obtain distance information in the range of 15-24 A, PCS provides
long-range (~ 40 A) distance and angular information, and RDC yields infor-
mation on the orientation of bond vectors. Restraints derived from these three
complementary techniques are therefore particularly useful to identify potential
differences between solution state and the structural state observed in cryo-EM
or also X-ray crystallography [6].

Single-particle cryo-EM yields density maps of which the resolution is de-
termined by the spectral signal-to-noise ratio as measured by the Fourier-shell
correlation (FSC) (see Fig. [I). The information in the density map is most re-
liable at low spatial frequency and decreases towards higher spatial frequencies
as the signal-to-noise ratio decreases. The local resolution can vary drastically
within a single density map due to the flexibility of domains and due to stronger
negative effects of image alignment errors at the periphery of the particles. A
single density map is an ensemble average over a large number of particle images
(usually 20 000-100 000). However, the single particle images could further pro-
vide additional information on conformational variability, either through clas-
sification into distinct states or by analysing variance and covariance, which is

highly valuable for the determination of structural ensembles.

3. Combining NMR and EM

A widely-used joint application of cryo-EM and NMR, analogous to that
between cryo-EM and X-ray crystallography, is the docking of protein domains
solved by NMR into density maps solved by cryo-EM, followed by refinement
to determine accurate atomic models. The use of this technique pre-dates the
“resolution revolution” of cryo-EM, as it is possible for both medium- or low-
resolution density maps resolved by EM. This straight-forward approach has
been used for example in the case of virus particles [7], actin filaments [§],
inflammasome structure [J] and a recent pilus filament [I0]. A recent review
on integrating cryo-EM and NMR highlighted several such applications [I1].

However, to optimally make use of complementarity, the structure should ideally
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be determined by using both restraints from NMR and cryo-EM at the same
time.

In the case of low- or mid-resolution cryo-EM maps, hybrid methods em-
ploying NMR-derived restraints have become a robust approach for building
accurate structural models. Starting with the first type-III secretion system (in
Shigella flexneri) to the recent TET2 enzyme complex, it has been highlighted
how details enabled by NMR—principally secondary structure information and
long range distance restraints—have improved the atomic details of cryo-EM
maps at resolution worse than 4 A. Demers et al. showed that with 996 ssNMR
distance constraints and cryo-EM density map of 7.7 A, the structure of the
type-III secretion system needle of S. flexneri could be determined to a pre-
cision of 0.4 A RMSD [I2ee]. Recently, Gauto et al. presented a strategy to
combine NMR with cryo-EM, which allowed them to solve a complex struc-
ture of the 468 kDa TET2 aminopeptidase dodecamer [I3ee]. The EM density
map at a resolution of 4.1 A could not be traced unambiguously and ssNMR
and IsSNMR experiments yielded 516 distance restraints and 544 backbone di-
hedral angle restraints, which alone did not suffice to solve the structure either.
By first identifying a-helices in both the EM map and the assigned chemical
shifts an initial model could be built, which was then refined iteratively. The
hybrid cryo-EM/NMR, approach resolved putatively functional loops (residues
120-138) that were unmodelable in the TET?2 crystal structure (Fig.[2h-d). The
positive charge and positioning of the loops in the centre of the catalytic cham-
ber suggests that they presumably play a role in guiding peptides entering the
chamber—which lead with their positively charged N-terminus [I4]—away from
the centre and toward the twelve negatively charged proteolytic sites within the
compartment. Determination of the loop structure facilitates detailed analysis
of the ensemble by MD, which is reliant on the correct positioning of the loops
in the starting conformation.

There are certain classes of molecules for which a similar approach can be
more routinely applied. One such instance is large RNA molecules, for which

the inherent flexibility of the molecule can make crystallography or cryo-EM
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Figure 2: Panels (a—d) show the integration approach of NMR and cryo-EM for the TET2 do-
decamer complex [I3ee]. Figures (a—d) taken with permission from [I3ee]. a) Experimentally
detected secondary of TET2 from ssNMR resonance assignments and the TALOS-N software
and long range intra-subunit interactions from IsSNMR and ssNMR. b) a-helices detected in
the 8 A resolution EM map of TET2 dodecamer complex. ¢) Ensemble of 10 structures of
one monomer overlaid in the EM map. The missing loop region, residues 120-138, in the
crystal structure is highlighted with black circle. d) Zoom in of EM map around the loop
missing in the crystal structure (blue) compared with one of the refined models using NMR
and cryo-EM data. Panels (e-h) show the refinement of integrating NMR, chemical shifts in
the MD simulations [I5ee|. Figures (e-h) taken with permission from [I5ee]. e) Cryo-EM
density map of the HIV-1 capsid tubular assembly at 5 A resolution. f) Root-mean-square
fluctuations (RMSF's) of the ensemble of the capsid protein hexamer obtained from integrat-
ing the chemical shift in the MD simulations. g) Differences of the chemical shifts between
experimental and refined models for all the residues (Ca in red, Cj in dark green, and C in
blue). h) The Ca root-mean-square deviations (RMSD) for 6 capsid protein chains between

the starting MDFF model and chemical shift biased models along the trajectory.
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challenging [I1], [16]. However, NMR is able to resolve atomistic local distance
restraint ensembles in these situations, albeit with limited information on global
tertiary structure of the RNA molecule and its flexibility, which can be provided
by cryo-EM. An example of this approach is that taken by Zhang and colleagues
to resolve the HIV-1 RNA duplex [I6] by integrating NMR-derived distance
restraints where the cryo-EM resolution was limited to 9 A due to the internal
flexibility of the duplex.

The combination of NMR and cryo-EM can be used to probe the structure
and functional mechanisms of natively disordered ligands for large complexes
that would otherwise be difficult to resolve by cryo-EM alone. For example, in a
study of the ~ 1.5 MDa human anaphase-promoting complex (APC/C), a com-
bined EM/NMR approach was used to identify that an intrinsically-disordered
inhibiting peptide, EMII1, is seen to have multiple disperse interactions with
multiple binding sites, serving to dynamically modulate the function of the
APC/CCDH1 receptor complex [I7]. Initially, NMR studies indicated that
other than a 45 aa zinc-binding region, the EMI1 inhibitory region (C-terminus,
143 aa) is substantially natively disordered. Difference mapping of EM recon-
structions with complexes constructed using recombinant mutant EMI1 frag-
ments, some with a WD40 S-propeller marker insertion (from S. cerevisiae
Doal), were used to identify the binding positions of parts of EMIL in the
complex. From this, a surface on the EMI1 linker region was determined to be
in a structurally important position for inhibiting APC/C, and its specificity for
inhibition was confirmed recombinantly. Another functionally important surface
was identified by alanine-scanning mutagenesis within the stable zinc-binding
region, for which an NMR structure was solved. These two surfaces, along with
the essential EMI1 D-box region, in spite of individually weak interactions, syn-
ergistically inhibit APC/CCDH1 by both blocking the substrate-binding site
and also mediating the ubiquitin chain elongation. The position of the inhibitor
was later confirmed with a cryo-EM structure of the whole complex [I8].

Similarly, Iadanza and colleagues recently presented a S>-microglobulin (S2m)

amyloid structure [I9]. When visualized by cryo-EM, the fibrils were heteroge-
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neous and displayed a wide range of morphologies, whereas in contrast a single
set of resonances was observed by ssNMR for residues within the core region of
Bom, indicating a conserved common subunit structure within the polymorphs
(a rare instance of peak doubling was thought to correspond to local pertur-
bations between the polymorphs). The ssNMR and cryo-EM data collectively
allowed a unique structural model for the Som fibril to be built, unveiling the
intra- and inter-subunit stabilizing interactions, namely the canonical amyloid
cross-G-structure down the fibrillar axis supported by S-stacking, subunit stabi-
lization by hydrophobic packing, and an intramolecular steric zipper and disul-
fide bond. Therefore even for the polymorphs unable to be reconstructed by
cryo-EM, detailed structural information was determined for the common sub-
unit, itself able to realize several polymorph geometries.

Perilla et al. [I5ee] proposed a new approach to incorporate the NMR chem-
ical shifts as a linear potential in MD force fields for the cryo-EM structure
refinement of a HIV-1 capsid tubular assembly with a 5 A resolution map
(Fig. ) This approach showed significant improvement in the refinement
of flexible loops in comparison to MD flexible fitting (MDFF'), especially in the
CypA-binding loop and the loop connecting helix 8 and 9 (Fig. ) Figure
shows the validation of this approach as the differences of the chemical shifts
between experimental and the chemical-shift-biased model are small, and the
sampling reaches a steady phase with root-mean-square deviations of 1 A after
0.2 ns simulation (Fig. [2h).

In all these examples, conditions for sample preparations of cryo-EM and
NMR were different, which needs to considered when analyzing the data. Since
IsNMR has an upper size limit that is lower than the typical lower size limit
for cryo-EM, IsNMR. data would have to be collected for smaller subunits of
a larger complex studied by cryo-EM, which makes combination of data more
difficult since the two experiments do not observe the protein(s) in exactly the
same state. However, there are cases where the same sample has been studied by
ssNMR and cryo-EM, in particular helical assemblies such as amyloid fibrils [20].

One such example of same specimen is the ssNMR/cryo-EM structure of
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Figure 3: Showing structural details of an AS-fibril obtained by ssNMR not detectable from
the cryo-EM data. a) Protonation states are determined by NMR which identify salt-bridges
between Asp7 and Arg5b as well as between Aspl and Lys28. b) An alternative rotamer is sug-
gested by the density map and could be clearly confirmed by a doubling of the corresponding
NMR resonance peaks of Phe20 and the neighboring Ala21 shown in c). Figures (b) and (c)

taken with permission from [20].

the AB(1-42) amyloid fibrils [20], where an atomic model was determined in
a map of 4.0 A resolution, with long-range non-sequential contacts identified
by ssNMR supporting the model. Protonation states (invisible to cryo-EM at
the resolution of 4 A) and therefore also salt bridges could be determined by
ssNMR (see Fig. |3p). Full site-specific NMR resonance assignments could be
obtained for all 42 residues and most residues only exhibit one set of resonances,
which indicates that the fibril is highly ordered and structurally homogeneous.
In addition an alternative rotamer of Phe20 (Fig. [3b,c) could be confirmed by
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ssNMR which at the resolution of 4 A could not have been assigned reliably by
the EM density map alone.

In the same direction, Baker et al. proposed a sample preparation method
for membrane proteins to use same specimens for cryo-EM and NMR, tech-
niques [22e]. With this new approach, they determined the structural and con-
formational differences of YidC in native membranes from purified and reconsti-
tuted YidC. The authors also highlighted that this approach could substantially

reduce cost and time for the preparation of the samples.

4. Combining cryo-EM and NMR and Simulation

The traditional approach [23] to combine experimental data with prior knowl-

edge of proteins is to minimize a hybrid energy function
E=Eyy+wEeyy,

where the molecular mechanics force-field Ej;p; describes prior knowledge of
proteins (e.g. stereo-chemical restraints), and E.,, describes the fit of the model
to the experimental data. When using different types of restraints, which are
schematically visualized and listed in Figure [1} the main question is how to

choose the different weights w, in
E= EMM + Z erewp,T .
i

Usually the optimal weight, w, is determined by cross-validation, which has the
purpose of preventing overfitting. The Bayesian formalism instead provides a
more general approach to determine this weight directly from the experimental
errors, provided they are known with sufficient accuracy. The Bayesian ap-
proach to protein structure determination has been introduced by Rieping et
al. [24], was recently formulated for cryo-EM data [25ee], and was in a similar
way implemented into the Integrative Modelling Platform (IMP) [26] by Bonomi
et al. [27e], which is a software that enables integrating data from diverse bio-

chemical and biophysical experiments for atomic model building.

10
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In general, we aim for the determination of an ensemble of possible struc-
tures, because the measured samples also do contain ensembles of structures.
When an ensemble is constructed to describe the experimental data, there are
however two different interpretations of what the structural ensemble represents:
uncertainty or true dynamics [21]. The choice of the approach to determine the
ensemble obviously depends on what the ensemble is supposed to represent.
The methods presented in the following interpret the ensemble as true struc-
tural dynamics.

When combining experimental data with MD simulations for the determi-
nation of ensembles, the maximum entropy (MaxEnt) principle [28] has been
found useful, which minimally biases the distribution obtained from an unre-
strained MD simulation with respect to the entropy of the distribution [29, [30].
Restraints can be introduced into an MD simulation to create a MaxFEnt solu-
tion [31L 32,33, [34]. It has been shown that ensemble-restrained MD simulations
yield a MaxEnt solution [35, [36]. An implementation of this approach is avail-
able through PLUMED-ISDB [B, B7]. NMR provides also information on the
time-scales of motions. To include such time-resolved data into MD simulations,
Capelli et al. [38ee] propose an approach that is based on the maximum-caliber
principle [39] and uses replica-averaged simulations with a time-dependent po-
tential.

The MaxEnt principle can be combined with a Bayesian formulation to take
into account a specific error model that describes the experimental errors, as
was done in the metainference method [40e]. Another class of such approaches
are reweighting schemes, where first an ensemble is created either by MD sim-
ulations or Monte-Carlo calculations, and then afterwards all structures in the
ensemble are weighted such that the ensemble average best fits the experimental
data. Reweighting approaches have been developed that also includes MaxEnt
restraints and Bayes formalism [41] [42] [43] [44e], 45 [46]. The reweighting ap-
proach requires that all relevant structures are well sampled in an MD (or MC)

simulation, which can be difficult to achieve for large protein complexes [47].

11
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Figure 4: Schematic plot of an energy landscape (black, left axis) and the corresponding
Boltzmann distribution (green, right axis) in solution state (room temperature). When freez-
ing this distribution on a microsecond time-scale the resulting non-equilibrium distribution

depends on the height of the energy barriers (blue, right axis).

5. NMR and cryo-EM report on different ensembles

In cryo-EM proteins are frozen in a thin film of vitrified ice. The freezing
process happens on a microsecond time-scale (it needs to be sufficiently fast
to prevent the formation of ice crystals). The obtained frozen conformational
distribution is therefore narrower than the Boltzmann distribution at physiolog-
ical temperatures (in solution state), which means low-energy states are more
populated than at native condition. Figure [4] schematically illustrates how the
conformational distribution changes from a room temperature Boltzmann dis-
tribution to a distribution of quickly frozen conformations. Since the freezing

happens fast, the frozen distribution is trapped in a non-equilibrium state, which

12
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means whether a state is visible in the cryo-EM data set depends not only on
free energy differences between the states, but also on the free energy barriers,
i.e. transition rates, between the states. For example state B2 (see Fig. {4 is
separated from a low energy minimum (state A) by a low energy barrier (with
a corresponding transition rate on the nanosecond time-scale) and can relax
towards state A during the cooling time of microseconds. However, state Bl
needs to overcome a higher energy barrier (with a corresponding transition rate
on the microsecond time-scale) and therefore will be trapped and its popula-
tion will not change much during the freezing process. This difference in the
conformational distribution between NMR and cryo-EM needs to be taken into

account in the model building process.

6. Outlook

The relative weights, w,., for combining different restraints have to be chosen
according to the reliability of the information that they represent. In a Bayesian
description these weights are formally obtained from Likelihood distributions
representing the error. The accurate modeling of the errors is therefore very
important, but not yet completely implemented in existing MaxEnt and/or
Bayesian approaches [48], which is particularly true for cryo-EM data. The
error of a cryo-EM density map is usually quantified by the spectral signal-to-
noise ratio (determined by the FSC). The reliability of the density map also
varies strongly between different regions, measured by local resolution, which
means the corresponding weight, w, should be position dependent.

Both NMR and cryo-EM also provide additional information on conforma-
tional dynamics. In principle NMR can yield for example S? order parameters,
RDC [49] orientation restraints, and peak widths [50, [5I] which report on the
conformational ensemble. Information on dynamics in single-particle cryo-EM
is usually represented by multiple conformations as well as by density variance
and covariances for each of these conformational states. In the implementations

of the MaxEnt principle mentioned above the ensemble is predicted (e.g. by MD
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simulation) and experimental data is used only as ensemble-averaged restraints.
However, since the experiments provide also information on the ensemble, the
predicted ensemble needs to be combined with experimental data to determine
the most likely structural ensemble. In the Bayesian framework this requires also
the modelling of the errors of the simulation and the errors of the experimental
ensemble data, such as for example errors of density covariances.

The error of the conformational distribution predicted by simulation comes
from both incomplete conformational sampling as well as from inaccuracies in
the force field (an approximate description of the energy landscape). The force
field inaccuracies depend non-linearly on the parameters (such as partial charges,
force constants, etc). Quantifying the errors of the simulation and of the ex-
perimental data on dynamics is difficult but needs to be done for a complete
Bayesian formulation, which is still an open problem and corresponding com-

putational approaches still need to be developed.
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