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and JuStruct, Jülich Center for Structural Biology,4
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Abstract7

Single-particle cryo-electron microscopy is increasingly used as a technique to

determine the atomic structure of challenging biological systems. Recent ad-

vances in microscope engineering, electron detection, and image processing have

allowed the structural determination of bigger and more flexible targets than

possible with the complementary techniques X-ray crystallography and NMR

spectroscopy. However, there exist many biological targets for which atomic

resolution cannot be achieved currently with cryo-electron microscopy, making

unambiguous determination of the protein structure impossible. Although de-

termining the structure of large biological systems using solely NMR is often

difficult, highly complementary experimental atomic-level data for each molecule

can be derived from the spectra, and used in combination with cryo-electron mi-

croscopy data. We review here strategies with which both techniques can be

synergistically combined, in order to reach detail and understanding unattain-

able by each technique acting alone; and the types of biological systems for

which such an approach would be desirable.
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1. Introduction11

NMR spectroscopy has been used for a long time as a powerful tool to deter-12

mine atomic structures of proteins and other macromolecules. The analysis of13

NMR spectra provides information on the local chemical environment of atoms14

from which local restraints can be derived that can be used to determine the15

three-dimensional atomic structure of a protein. The size limitation for routine16

structure determination is typically ∼ 30 kDa in liquid-state NMR (lsNMR),17

which relies on the fast tumbling of molecules, although in some cases much18

larger proteins have been studied by NMR [1].19

For magic-angle spinning NMR (referred to here as solid-state NMR or ss-20

NMR) this size limitation does not hold (proteins can be larger than 100 kDa),21

but other limitations pose challenges for the structural interpretation of ssNMR22

data [2]. NMR in general is extremely sensitive to even small changes in the23

local structure, which makes it a unique tool to study structural details such as24

protonation states, binding of ions, presence of different rotamers, etc., which25

are invisible to or at least very difficult to determine by most other experimental26

techniques. This is particularly helpful in drug discovery, where ligand binding27

modes need to be determined with very high accuracy. A particular strength of28

the NMR technique lies in the fact that proteins can be studied in solution at29

physiological temperatures and therefore (potentially functionally important)30

protein dynamics can be observed [3].31

On the other hand, in single-particle cryo-electron microscopy (cryo-EM),32

individual protein molecules are embedded in a thin (20–100 nm) layer of vit-33

rified ice. A large number of images of these single proteins, ideally in random34

orientations, are then reconstructed into a 3D density map which enables the35

building of an atomic model if the resolution of the reconstruction is high enough36

(better than ∼ 4.5 Å). For several years the resolution in cryo-EM was rather37

limited to just below 1 nm, which allowed docking of known structures into38

the EM density maps, for example to ascertain the placement of individually39

determined (by X-ray crystallography or NMR) subunits within a large protein40

2



RDC

NMR

Cryo-EM

                       
NOEs                                       Distance restraints (2-6 Å)
J coupling                                Dihedral angle restraints
Chemical shifts                        Secondary structure (TALOS)
RDC                                        Orientation of bond vector
S2                                            Flexibility of bond vector
PRE                                        Distance information (15-24 Å)
PCS                                        Distance (~40 Å) & angular information                       

0

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5

FS
C

Spatial frequency (1/Å)

Chemical
    shifts

NOE

J coupling

S2

Figure 1: Schematic representation of integrating NMR with cryo-EM. Brief details of infor-

mation obtained from NMR and cryo-EM are shown.

complex. However, the recent technological breakthroughs in cryo-EM now en-41

able the determination of molecular structures quite routinely to resolutions of42

3–4 Å for many protein complexes.43

As NMR provides the most detailed information on local length scales and44

cryo-EM is most accurate at larger length scales, the techniques are complemen-45

tary, and it seems promising to combine both techniques to study the structure46

of proteins and protein complexes.47

2. Information from NMR and Cryo-EM Experiments48

The most informative measures obtained from NMR experiments (see also49

Fig. 1) are NOE (nuclear Overhauser effect) distance restraints (up to 6 Å),50

dihedral angle restraints (from J-coupling), and chemical shifts which can for51

example be used to identify secondary structure (typically through TALOS [4])52

but can also be used directly as restraints in MD simulations [5]. S2 order pa-53

rameters report on angular motional freedom of internuclear vectors. Only few54

measures yield information on longer length scales, in particular PCS (pseudo-55

contact shifts), PRE (paramagnetic relaxation enhancement) and RDC (residual56

dipolar coupling), which are less common and more difficult to obtain: PCS and57

PRE require the use of paramagnetic labels, whereas RDC can also use para-58

magnetic labels or can alternatively be performed in aligning media. PRE can59
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be used to obtain distance information in the range of 15–24 Å, PCS provides60

long-range (∼ 40 Å) distance and angular information, and RDC yields infor-61

mation on the orientation of bond vectors. Restraints derived from these three62

complementary techniques are therefore particularly useful to identify potential63

differences between solution state and the structural state observed in cryo-EM64

or also X-ray crystallography [6].65

Single-particle cryo-EM yields density maps of which the resolution is de-66

termined by the spectral signal-to-noise ratio as measured by the Fourier-shell67

correlation (FSC) (see Fig. 1). The information in the density map is most re-68

liable at low spatial frequency and decreases towards higher spatial frequencies69

as the signal-to-noise ratio decreases. The local resolution can vary drastically70

within a single density map due to the flexibility of domains and due to stronger71

negative effects of image alignment errors at the periphery of the particles. A72

single density map is an ensemble average over a large number of particle images73

(usually 20 000–100 000). However, the single particle images could further pro-74

vide additional information on conformational variability, either through clas-75

sification into distinct states or by analysing variance and covariance, which is76

highly valuable for the determination of structural ensembles.77

3. Combining NMR and EM78

A widely-used joint application of cryo-EM and NMR, analogous to that79

between cryo-EM and X-ray crystallography, is the docking of protein domains80

solved by NMR into density maps solved by cryo-EM, followed by refinement81

to determine accurate atomic models. The use of this technique pre-dates the82

“resolution revolution” of cryo-EM, as it is possible for both medium- or low-83

resolution density maps resolved by EM. This straight-forward approach has84

been used for example in the case of virus particles [7], actin filaments [8],85

inflammasome structure [9] and a recent pilus filament [10]. A recent review86

on integrating cryo-EM and NMR highlighted several such applications [11].87

However, to optimally make use of complementarity, the structure should ideally88
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be determined by using both restraints from NMR and cryo-EM at the same89

time.90

In the case of low- or mid-resolution cryo-EM maps, hybrid methods em-91

ploying NMR-derived restraints have become a robust approach for building92

accurate structural models. Starting with the first type-III secretion system (in93

Shigella flexneri) to the recent TET2 enzyme complex, it has been highlighted94

how details enabled by NMR—principally secondary structure information and95

long range distance restraints—have improved the atomic details of cryo-EM96

maps at resolution worse than 4 Å. Demers et al. showed that with 996 ssNMR97

distance constraints and cryo-EM density map of 7.7 Å, the structure of the98

type-III secretion system needle of S. flexneri could be determined to a pre-99

cision of 0.4 Å RMSD [12••]. Recently, Gauto et al. presented a strategy to100

combine NMR with cryo-EM, which allowed them to solve a complex struc-101

ture of the 468 kDa TET2 aminopeptidase dodecamer [13••]. The EM density102

map at a resolution of 4.1 Å could not be traced unambiguously and ssNMR103

and lsNMR experiments yielded 516 distance restraints and 544 backbone di-104

hedral angle restraints, which alone did not suffice to solve the structure either.105

By first identifying α-helices in both the EM map and the assigned chemical106

shifts an initial model could be built, which was then refined iteratively. The107

hybrid cryo-EM/NMR approach resolved putatively functional loops (residues108

120–138) that were unmodelable in the TET2 crystal structure (Fig. 2a–d). The109

positive charge and positioning of the loops in the centre of the catalytic cham-110

ber suggests that they presumably play a role in guiding peptides entering the111

chamber—which lead with their positively charged N-terminus [14]—away from112

the centre and toward the twelve negatively charged proteolytic sites within the113

compartment. Determination of the loop structure facilitates detailed analysis114

of the ensemble by MD, which is reliant on the correct positioning of the loops115

in the starting conformation.116

There are certain classes of molecules for which a similar approach can be117

more routinely applied. One such instance is large RNA molecules, for which118

the inherent flexibility of the molecule can make crystallography or cryo-EM119
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Figure 2: Panels (a–d) show the integration approach of NMR and cryo-EM for the TET2 do-

decamer complex [13••]. Figures (a–d) taken with permission from [13••]. a) Experimentally

detected secondary of TET2 from ssNMR resonance assignments and the TALOS-N software

and long range intra-subunit interactions from lsNMR and ssNMR. b) α-helices detected in

the 8 Å resolution EM map of TET2 dodecamer complex. c) Ensemble of 10 structures of

one monomer overlaid in the EM map. The missing loop region, residues 120–138, in the

crystal structure is highlighted with black circle. d) Zoom in of EM map around the loop

missing in the crystal structure (blue) compared with one of the refined models using NMR

and cryo-EM data. Panels (e–h) show the refinement of integrating NMR chemical shifts in

the MD simulations [15••]. Figures (e–h) taken with permission from [15••]. e) Cryo-EM

density map of the HIV-1 capsid tubular assembly at 5 Å resolution. f) Root-mean-square

fluctuations (RMSFs) of the ensemble of the capsid protein hexamer obtained from integrat-

ing the chemical shift in the MD simulations. g) Differences of the chemical shifts between

experimental and refined models for all the residues (Cα in red, Cβ in dark green, and C in

blue). h) The Cα root-mean-square deviations (RMSD) for 6 capsid protein chains between

the starting MDFF model and chemical shift biased models along the trajectory.
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challenging [11, 16]. However, NMR is able to resolve atomistic local distance120

restraint ensembles in these situations, albeit with limited information on global121

tertiary structure of the RNA molecule and its flexibility, which can be provided122

by cryo-EM. An example of this approach is that taken by Zhang and colleagues123

to resolve the HIV-1 RNA duplex [16] by integrating NMR-derived distance124

restraints where the cryo-EM resolution was limited to 9 Å due to the internal125

flexibility of the duplex.126

The combination of NMR and cryo-EM can be used to probe the structure127

and functional mechanisms of natively disordered ligands for large complexes128

that would otherwise be difficult to resolve by cryo-EM alone. For example, in a129

study of the ∼ 1.5 MDa human anaphase-promoting complex (APC/C), a com-130

bined EM/NMR approach was used to identify that an intrinsically-disordered131

inhibiting peptide, EMI1, is seen to have multiple disperse interactions with132

multiple binding sites, serving to dynamically modulate the function of the133

APC/CCDH1 receptor complex [17]. Initially, NMR studies indicated that134

other than a 45 aa zinc-binding region, the EMI1 inhibitory region (C-terminus,135

143 aa) is substantially natively disordered. Difference mapping of EM recon-136

structions with complexes constructed using recombinant mutant EMI1 frag-137

ments, some with a WD40 β-propeller marker insertion (from S. cerevisiae138

Doa1), were used to identify the binding positions of parts of EMI1 in the139

complex. From this, a surface on the EMI1 linker region was determined to be140

in a structurally important position for inhibiting APC/C, and its specificity for141

inhibition was confirmed recombinantly. Another functionally important surface142

was identified by alanine-scanning mutagenesis within the stable zinc-binding143

region, for which an NMR structure was solved. These two surfaces, along with144

the essential EMI1 D-box region, in spite of individually weak interactions, syn-145

ergistically inhibit APC/CCDH1 by both blocking the substrate-binding site146

and also mediating the ubiquitin chain elongation. The position of the inhibitor147

was later confirmed with a cryo-EM structure of the whole complex [18].148

Similarly, Iadanza and colleagues recently presented a β2-microglobulin (β2m)149

amyloid structure [19]. When visualized by cryo-EM, the fibrils were heteroge-150
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neous and displayed a wide range of morphologies, whereas in contrast a single151

set of resonances was observed by ssNMR for residues within the core region of152

β2m, indicating a conserved common subunit structure within the polymorphs153

(a rare instance of peak doubling was thought to correspond to local pertur-154

bations between the polymorphs). The ssNMR and cryo-EM data collectively155

allowed a unique structural model for the β2m fibril to be built, unveiling the156

intra- and inter-subunit stabilizing interactions, namely the canonical amyloid157

cross-β-structure down the fibrillar axis supported by β-stacking, subunit stabi-158

lization by hydrophobic packing, and an intramolecular steric zipper and disul-159

fide bond. Therefore even for the polymorphs unable to be reconstructed by160

cryo-EM, detailed structural information was determined for the common sub-161

unit, itself able to realize several polymorph geometries.162

Perilla et al. [15••] proposed a new approach to incorporate the NMR chem-163

ical shifts as a linear potential in MD force fields for the cryo-EM structure164

refinement of a HIV-1 capsid tubular assembly with a 5 Å resolution map165

(Fig. 2e). This approach showed significant improvement in the refinement166

of flexible loops in comparison to MD flexible fitting (MDFF), especially in the167

CypA-binding loop and the loop connecting helix 8 and 9 (Fig. 2f). Figure 2g168

shows the validation of this approach as the differences of the chemical shifts169

between experimental and the chemical-shift-biased model are small, and the170

sampling reaches a steady phase with root-mean-square deviations of 1 Å after171

0.2 ns simulation (Fig. 2h).172

In all these examples, conditions for sample preparations of cryo-EM and173

NMR were different, which needs to considered when analyzing the data. Since174

lsNMR has an upper size limit that is lower than the typical lower size limit175

for cryo-EM, lsNMR data would have to be collected for smaller subunits of176

a larger complex studied by cryo-EM, which makes combination of data more177

difficult since the two experiments do not observe the protein(s) in exactly the178

same state. However, there are cases where the same sample has been studied by179

ssNMR and cryo-EM, in particular helical assemblies such as amyloid fibrils [20].180

One such example of same specimen is the ssNMR/cryo-EM structure of181
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Figure 3: Showing structural details of an Aβ-fibril obtained by ssNMR not detectable from

the cryo-EM data. a) Protonation states are determined by NMR which identify salt-bridges

between Asp7 and Arg5 as well as between Asp1 and Lys28. b) An alternative rotamer is sug-

gested by the density map and could be clearly confirmed by a doubling of the corresponding

NMR resonance peaks of Phe20 and the neighboring Ala21 shown in c). Figures (b) and (c)

taken with permission from [20].

the Aβ(1–42) amyloid fibrils [20], where an atomic model was determined in182

a map of 4.0 Å resolution, with long-range non-sequential contacts identified183

by ssNMR supporting the model. Protonation states (invisible to cryo-EM at184

the resolution of 4 Å) and therefore also salt bridges could be determined by185

ssNMR (see Fig. 3a). Full site-specific NMR resonance assignments could be186

obtained for all 42 residues and most residues only exhibit one set of resonances,187

which indicates that the fibril is highly ordered and structurally homogeneous.188

In addition an alternative rotamer of Phe20 (Fig. 3b,c) could be confirmed by189
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ssNMR which at the resolution of 4 Å could not have been assigned reliably by190

the EM density map alone.191

In the same direction, Baker et al. proposed a sample preparation method192

for membrane proteins to use same specimens for cryo-EM and NMR tech-193

niques [22•]. With this new approach, they determined the structural and con-194

formational differences of YidC in native membranes from purified and reconsti-195

tuted YidC. The authors also highlighted that this approach could substantially196

reduce cost and time for the preparation of the samples.197

4. Combining cryo-EM and NMR and Simulation198

The traditional approach [23] to combine experimental data with prior knowl-

edge of proteins is to minimize a hybrid energy function

E = EMM + wEexp ,

where the molecular mechanics force-field EMM describes prior knowledge of

proteins (e.g. stereo-chemical restraints), and Eexp describes the fit of the model

to the experimental data. When using different types of restraints, which are

schematically visualized and listed in Figure 1, the main question is how to

choose the different weights wr in

E = EMM +
∑
r

wrEexp,r .

Usually the optimal weight, w, is determined by cross-validation, which has the199

purpose of preventing overfitting. The Bayesian formalism instead provides a200

more general approach to determine this weight directly from the experimental201

errors, provided they are known with sufficient accuracy. The Bayesian ap-202

proach to protein structure determination has been introduced by Rieping et203

al. [24], was recently formulated for cryo-EM data [25••], and was in a similar204

way implemented into the Integrative Modelling Platform (IMP) [26] by Bonomi205

et al. [27•], which is a software that enables integrating data from diverse bio-206

chemical and biophysical experiments for atomic model building.207
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In general, we aim for the determination of an ensemble of possible struc-208

tures, because the measured samples also do contain ensembles of structures.209

When an ensemble is constructed to describe the experimental data, there are210

however two different interpretations of what the structural ensemble represents:211

uncertainty or true dynamics [21]. The choice of the approach to determine the212

ensemble obviously depends on what the ensemble is supposed to represent.213

The methods presented in the following interpret the ensemble as true struc-214

tural dynamics.215

When combining experimental data with MD simulations for the determi-216

nation of ensembles, the maximum entropy (MaxEnt) principle [28] has been217

found useful, which minimally biases the distribution obtained from an unre-218

strained MD simulation with respect to the entropy of the distribution [29, 30].219

Restraints can be introduced into an MD simulation to create a MaxEnt solu-220

tion [31, 32, 33, 34]. It has been shown that ensemble-restrained MD simulations221

yield a MaxEnt solution [35, 36]. An implementation of this approach is avail-222

able through PLUMED-ISDB [5, 37]. NMR provides also information on the223

time-scales of motions. To include such time-resolved data into MD simulations,224

Capelli et al. [38••] propose an approach that is based on the maximum-caliber225

principle [39] and uses replica-averaged simulations with a time-dependent po-226

tential.227

The MaxEnt principle can be combined with a Bayesian formulation to take228

into account a specific error model that describes the experimental errors, as229

was done in the metainference method [40•]. Another class of such approaches230

are reweighting schemes, where first an ensemble is created either by MD sim-231

ulations or Monte-Carlo calculations, and then afterwards all structures in the232

ensemble are weighted such that the ensemble average best fits the experimental233

data. Reweighting approaches have been developed that also includes MaxEnt234

restraints and Bayes formalism [41, 42, 43, 44•, 45, 46]. The reweighting ap-235

proach requires that all relevant structures are well sampled in an MD (or MC)236

simulation, which can be difficult to achieve for large protein complexes [47].237

11



1

2

En
er

gy
 [k

B
T]

μs

ns

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

at physiological T
after freezing 

A B2B1

3

Reaction coordinate

Figure 4: Schematic plot of an energy landscape (black, left axis) and the corresponding

Boltzmann distribution (green, right axis) in solution state (room temperature). When freez-

ing this distribution on a microsecond time-scale the resulting non-equilibrium distribution

depends on the height of the energy barriers (blue, right axis).

5. NMR and cryo-EM report on different ensembles238

In cryo-EM proteins are frozen in a thin film of vitrified ice. The freezing239

process happens on a microsecond time-scale (it needs to be sufficiently fast240

to prevent the formation of ice crystals). The obtained frozen conformational241

distribution is therefore narrower than the Boltzmann distribution at physiolog-242

ical temperatures (in solution state), which means low-energy states are more243

populated than at native condition. Figure 4 schematically illustrates how the244

conformational distribution changes from a room temperature Boltzmann dis-245

tribution to a distribution of quickly frozen conformations. Since the freezing246

happens fast, the frozen distribution is trapped in a non-equilibrium state, which247
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means whether a state is visible in the cryo-EM data set depends not only on248

free energy differences between the states, but also on the free energy barriers,249

i.e. transition rates, between the states. For example state B2 (see Fig. 4) is250

separated from a low energy minimum (state A) by a low energy barrier (with251

a corresponding transition rate on the nanosecond time-scale) and can relax252

towards state A during the cooling time of microseconds. However, state B1253

needs to overcome a higher energy barrier (with a corresponding transition rate254

on the microsecond time-scale) and therefore will be trapped and its popula-255

tion will not change much during the freezing process. This difference in the256

conformational distribution between NMR and cryo-EM needs to be taken into257

account in the model building process.258

6. Outlook259

The relative weights, wr, for combining different restraints have to be chosen260

according to the reliability of the information that they represent. In a Bayesian261

description these weights are formally obtained from Likelihood distributions262

representing the error. The accurate modeling of the errors is therefore very263

important, but not yet completely implemented in existing MaxEnt and/or264

Bayesian approaches [48], which is particularly true for cryo-EM data. The265

error of a cryo-EM density map is usually quantified by the spectral signal-to-266

noise ratio (determined by the FSC). The reliability of the density map also267

varies strongly between different regions, measured by local resolution, which268

means the corresponding weight, w, should be position dependent.269

Both NMR and cryo-EM also provide additional information on conforma-270

tional dynamics. In principle NMR can yield for example S2 order parameters,271

RDC [49] orientation restraints, and peak widths [50, 51] which report on the272

conformational ensemble. Information on dynamics in single-particle cryo-EM273

is usually represented by multiple conformations as well as by density variance274

and covariances for each of these conformational states. In the implementations275

of the MaxEnt principle mentioned above the ensemble is predicted (e.g. by MD276
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simulation) and experimental data is used only as ensemble-averaged restraints.277

However, since the experiments provide also information on the ensemble, the278

predicted ensemble needs to be combined with experimental data to determine279

the most likely structural ensemble. In the Bayesian framework this requires also280

the modelling of the errors of the simulation and the errors of the experimental281

ensemble data, such as for example errors of density covariances.282

The error of the conformational distribution predicted by simulation comes283

from both incomplete conformational sampling as well as from inaccuracies in284

the force field (an approximate description of the energy landscape). The force285

field inaccuracies depend non-linearly on the parameters (such as partial charges,286

force constants, etc). Quantifying the errors of the simulation and of the ex-287

perimental data on dynamics is difficult but needs to be done for a complete288

Bayesian formulation, which is still an open problem and corresponding com-289

putational approaches still need to be developed.290
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perpolarized MAS NMR of unfolded and misfolded proteins, Solid State513

Nucl. Magn. Reson. 98 (2019) 1–11. doi:10.1016/j.ssnmr.2018.12.003.514

22

http://dx.doi.org/10.1016/j.sbi.2014.08.001
http://dx.doi.org/10.1016/j.sbi.2014.08.001
http://dx.doi.org/10.1016/j.sbi.2014.08.001
http://dx.doi.org/10.1126/science.1157092
http://dx.doi.org/10.1073/pnas.0406130102
http://dx.doi.org/10.1016/j.ssnmr.2018.12.003

	Introduction
	Information from NMR and Cryo-EM Experiments
	Combining NMR and EM
	Combining cryo-EM and NMR and Simulation
	NMR and cryo-EM report on different ensembles
	Outlook

